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Abstract. Let A, B, and C be Banach algebras, α ∈ Hom(A,B) and
β ∈ Hom(C,B), and ∥ α ∥≤ 1, ∥β ∥≤ 1. IN this paper we define the Ba-
nach algebra A×αB×βC by new product on A×B×C which is a strongly
splitting extension of C by B. Then we show that these products from
a large class of Banach algebras which contains all module extensions
and triangular Banach algebras. Finally we consider spectrum, Arens
regularity, amenability and weak amenability of these products.
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1. Introduction and Background
Let A and B be Banach algebra and α be a multiplicative linear functional

on A. The Lau product A ×α B was first introduced by Lau [11] for the
special case that A is the predual of a von Neumann algebras and α is the
identity of A∗. Monfared [12] extended the notion of Lau product A×αB to
arbitrary Banach algebras and studied various properties of such product.
In particular A ×α B is a strongly splitting Banach algebra extension of B
by A. The reader can see [13, 1] for a thorough study of this question and
its relation to automatic continuity and cohomology of Banach algebras.

Module extension as a good generalization of Banach algebra extensions
were introduced by Gourdeau [9] and were used to show that amenability of
A∗∗ implies amenability of A. Zhang [16] used module extensions to answer
an open question regarding weak amenability, raised by Dales, Ghahramani,
and Gronbaek [3]. Many researchers have become interested in this subject
and have worked on it. See [14, 6] for more reading. In [4] we define (α, β)
-product by the following identity, where α, β ∈ Hom(A,B)

(a, b) · (a′, b′) = (aa′, α(a)b′ + bβ(a′)).

In this paper we define the new product between three Banach algebras
A ×α B ×β C, such that it is extension of (α, β) -product. As we will see
in example 2.4, triangular Banach algebras can be easily represented in
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terms of an this product. moreover the above mentioned group of examples,
in contrast to direct products A ×α B ×β C provide a wealth of counter-
examples, as there are properties such as commutativity, which are satisfied
by three of A, B, C, and A×α B ×β C but rate by the another one.

These facts suggest that this product are worth to study. The main aim of
this paper is to define and study the product between three Banach algebras,
also study some homologimathcal properties of A×αB×β C, specifically, the
concepts spectrum, Arens regularity, amenability, and weak amenability.

Before proceeding further, let us recall some terminology. Throughout A,
B and C are Banach algebras, Hom(A,B) denotes the set of all homomor-
phism from A into B and by ∆(A) we mean Hom(A,C).

2. Main Results
2.1. Definitions and Remarks. In this section we study some properties
of the new product between three Banach algebras. We begin with a more
general definition, namely A×α B ×β C, as it was appeared in [4].

Definition 2.1. Let A, B, and C be Banach algebras, X be a Banach B-
bimodule, α ∈ Hom(A,B), and β ∈ Hom(C,B) such that ∥α∥ ≤ 1 and
∥β∥ ≤ 1. The Banach algebra A ×α X ×β C is defined by the following
actions

(a1, x1, c1) + (a2, x2, c2) = (a1 + a2, x1 + x2, c1 + c2)

λ(a1, x1, c1) = (λa1, λx1, λc1)

(a1, x1, c1) · (a2, x2, c2) = (a1a2, α(a1)x2 + x1β(c2), c1c2)

∥(a, x, c)∥ = ∥a∥+ ∥x∥+ ∥c∥.
Similarly we can define the Banach algebra A×α B ×β C.

Example 2.2. If C=A, then A×α B ×β A ∼= A×α,β B and A×α X ×β A ∼=
A×α,β X was defined in [4].

Example 2.3. In the above definition A×α B×β {0} = A×α,0 B and {0}×α

B ×β C = B ×0,β C.

Example 2.4. Suppose A and B are Banach algebras and X is a Banach
(A, B)-module. The triangular algebra T =

(
A X
0 B

)
with usual matrix

operations and norm

∥
(
a x
0 b

)
∥ = ∥a∥A + ∥x∥X + ∥b∥B

is a Banach algebra.
Now if we suppose α = β = id then one can easily see that the map

θ : A×α X ×β C → T , θ(a, x, b) =
(
a x
0 b

)
is a surjective isometric algebra isomorphism.
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Remark 2.5. (i) A×αB×β C is a strongly splitting Banach algebra extension
of C by A×α,0 B. In other words, A×α,0 B is a closed ideal of A×α B ×β C
and (A×α B ×β C)/A×α,0 B is isometrically isomorphic to C. Similarly the
following short exact sequences are strongly splitting:

Σ1 : 0 → B ×0,β C i→ A×α B ×β C q→ A → 0

Σ2 : 0 → B i→ A×α B ×β C q→ A× C → 0.

(ii) For α, γ ∈ Hom(A,B), β, η ∈ Hom(C,B), A×αB×β C ∼= A×γ B×η C
if and only if there exist φ ∈ Hom(A) and ψ ∈ Hom(C) such that α = γoφ,
β = ηoψ, if and only if there exist φ,ψ ∈ Hom(B) such that α = φoγ,
β = ψoη.

(iii) (1A, 0, 1B) is an identity for A×α B ×β C.
(iv) (aλ, bλ, cλ)λ is a bounded approximate identity for A ×α B ×β C if

and only if ∥bλ∥ → 0 and (aλ)λ, (cλ)λ are respectively bounded approximate
identity for A and C.

(v) The dual of the space A×αB×β C can be identified with A∗×B∗×C∗

naturally as in the direct products and maximum norm.
(vi) Suppose I is an ideal of A, J is an ideal of B, and K is an ideal of

C. Then
(a) If I ⊆ Kerα and J ⊆ Kerβ then I × J ×K is an ideal in A×α B ×β C.
(b) If I ̸⊆ Kerα or J ̸⊆ Kerβ, then I × J ×K is an ideal in A×α B ×β C
if and only if J = B.

Example 2.4, preceding remark and the next proposition reveal resem-
blance of this products to matrix products.

Proposition 2.6. Let M be an ideal of A×α B ×β C and
I = {a ∈ A : (a, b, c) ∈M for some , b ∈ B, c ∈ C},

J = {b ∈ B : (a, b, c) ∈M for some a ∈ A, c ∈ C},
K = {c ∈ C : (a, b, c) ∈M for some , a ∈ A, b ∈ B}.

Then
(i) I is an ideal in A and K is an ideal in C.
(ii) If α and β are onto, then J is an ideal of B. Furthermore if Aand B
have an approximate identity and M is closed, then M = I × J ×K.

Proof. (i) Straightforward.
(ii) Let j ∈ J and b ∈ B. Then there are a ∈ A and c ∈ C such
that α(a) = b and β(c) = b. Since M is an ideal of A ×α B ×β C, then
(a, b, c)(0, j, 0) = (0, α(a)j, 0) and (0, j, 0)(a, b, c) = (0, jβ(c), 0) are both in
M and hence jb, bj ∈ J .
Let (aλ)λ and (cµ)µ be a bounded approximate identity for A and C respec-
tively, a0 ∈ I, b0 ∈ J , and c0 ∈ K. Choose a ∈ I and c ∈ K such that
(a, b0, c) ∈M . Then

∥(aλ, 0, cµ)(a0, 0, c0)− (a0, 0, c0)∥ = ∥aλa0 − a0∥+ ∥cµc0 − c0∥ → 0
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and hence (a0, 0, c0) ∈M . Similarly (a, 0, c) ∈M . Therefore
(a0, b0, c0) = (a0, 0, c0) + (a, b0, c)− (a, 0, c) ∈M.

□
Proof of the next theorem was inspired by [12, proposition 2.4.]

Theorem 2.7. Let A B, and C be Banach algebras with the non-empty spec-
trum, α ∈ Hom(A,B), and β ∈ Hom(C,B) such that ∥α∥ ≤ 1 and ∥β∥ ≤ 1.
Let

E : = {(1/2ψo(α+ β(c)), ψ, 0) : ψ ∈ ∆(B), c ∈ C}
∪ {(0, ψ, 1/2ψo(α(a) + β)) : ψ ∈ ∆(B), a ∈ A}

F : = {(φ, 0, ω) : φ ∈ ∆(A), ω ∈ ∆(C)}.
Then E and F are disjoint, closed subsets of (∆(A×α B ×β C), weak∗) and

∆(A×α B ×β C) = E ∪ F.
Proof. It is easy to see that E ∪ F ⊆ ∆(A×α B ×β C) and E ∩ F = ∅. Con-
versely, let (φ,ψ, ω) ∈ ∆(A×α B ×β C). Then for every (a, b, c), (a′, b′, c′) ∈
A×α B ×β C the identities

(φ,ψ, ω)((a, b, c)(a′, b′, c′)) = (φ,ψ, ω)(a, b, c)(φ,ψ, ω)(a′, b′, c′)

imply that
φ(aa′) + ψ(α(a)b′ + bβ(c′)) + ω(cc′) = φ(a)φ(a′) + φ(a)ψ(b′) + φ(a)ω(c′)

+ ψ(b)φ(a′) + ψ(b)ψ(b′) + ψ(b)ω(c′)

+ ω(c)φ(a′) + ω(c)ψ(b′) + ω(c)ω(c′).

Taking b = b′ = c = c′ = 0, we get φ(aa′) = φ(a)φ(a′), a = a′ = b = b′ = 0,
we get ω(cc′) = ω(c)ω(c′), and taking a = a′ = c = c′ = 0, we get ψ(bb′) = 0.
Thus

ψ(α(a))ψ(b′) + ψ(b)ψ(β(c′)) = φ(a)ψ(b′) + φ(a)ω(c′) + ψ(b)φ(a′)

+ ψ(b)ω(c′) + ω(c)φ(a′) + ω(c)ψ(b′).

Taking a = a′, b = b′, and c = c′ we get ψ(b)(ψ(α(a)+β(c))) = ψ(b)(2φ(a)+
2ω(c)) + 2φ(a)ω(c). So if ψ ̸= 0 and b ∈ B is chosen so that ψ(b) ̸= 0 and
ω = 0 then, φ = 1/2(ψo(α + β(c))) for some c ∈ C similarly if ψ ̸= 0 and
b ∈ B is chosen so that ψ(b) ̸= 0 and φ = 0 then, ω = 1/2(ψo(α(a) + β))
for some a ∈ A. Therefore (φ,ψ, ω) ∈ E. Now if ψ = 0, then (φ, 0, ω) ∈ F .
Therefore ∆(A×α B ×β C) = E ∪ F .

Let (1/2(ψ0o(α+ β(c)), ψ0, 0) ∈ E and choose b ∈ B such that ψ0(b) ̸= 0.
Let ϵ = 1/2|ψ0(b)| and consider the following relative weak*-neighborhood
of (1/2(ψ0o(α+ β(c)), ψ0, 0)

U = {(φ,ψ, ω) ∈ ∆(A×α B ×β C) :| ψ(b)− ψ0(b) |< ϵ}.
If (φ, 0, ω) ∈ U ∩ F , then | ψ0(b) |< ϵ, which is a contradiction. Thus
U ⊆ E. This shows that E is open in (∆(A×α B ×β C), weak∗) and hence
F is closed.
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Suppose (φ, 0, ω) ∈ F∩Ew∗ and choose a net {(1/2(ψλo(α+β(c0)), ψλ, 0)}
in E which is weak*-convergent to (φ, 0, ω), that is,

1/2(ψλo(α(a) + β(c0)) + ψλ(b) → φ(a) (a, b, c) ∈ A×α B ×β C.

Taking a = 0, we conclude that 1/2(ψλo(β(c0))) + ψλ(b) → 0, b ∈ B. In
particular ψλo(α + β(c0))

w∗→ 0. Letting b = 0 we see that 1/2(ψλo(α(a) +
β(c0)) → φ(a) and hence φ = 0 which is a contradiction. Therefore E is
closed in (∆(A×α B ×β C), weak∗). □

Corollary 2.8. Let α ∈ Hom(A,B), and β ∈ Hom(C,B), ∥α∥ ≤ 1 and
∥β∥ ≤ 1. Then A ×α B ×β C is semisimple if and only if A, B, and C are
semisimple.

Proof. Suppose A ×α B ×β C is semisimple, and b ∈ B is such that for
ψ ∈ ∆(B), ψ(b) = 0. Then (1/2(ψo(α + β(c0)), ψ, 0)(0, b, 0) = 0 and
(φ, 0, ω)(0, b, 0) = 0 (φ ∈ ∆(A), ω ∈ ∆(C)). Thus (φ,ψ, ω)(0, b, 0) = 0 for
all (φ,ψ, ω) ∈ ∆(A×α B ×β C) and hence b = 0. Therefore B is semisimple.
Similarly A and B are semisimple.

Conversely if (a, b, c) ∈ A×αB×βC is such that for (φ,ψ, ω) ∈ ∆(A×αB×β

C), (φ,ψ, ω)(a, b, c) = 0, then φ(a) = (φ, 0, 0)(a, b, c) = 0 (φ ∈ ∆(A)). Since
A is semisimple, it follows that a = 0. Consequently ψ(b) = 0, (ψ ∈ ∆(B))
and ω(c) = 0, (ω ∈ ∆(C)), and hence b = 0, c = 0 as B, C are semisimple.
Therefore A×α B ×β C is semisimple. □

Remark 2.9. Suppose A and C are commutative and for every a ∈ A, b ∈ B,
and c ∈ C, α(a)b = bβ(c). (By this hypothesis A×αB×β C is commutative.)
Since B is a closed ideal of A×αB×β C and (A×α B ×β C)/B is isometrically
isomorphic toA×C, it follows from [10, theorems 4.2.6 and 4.3.8], A×αB×βC
is regular if and only if A, B, and C are regular.

2.2. Arens regularity. Let A be a Banach algebra. The first and second
Arens multiplications on A∗∗ that we denote by □ and ♢ respectively, are
defined in three steps. For a, b ∈ A, ϕ ∈ A∗ and Φ,Ψ ∈ A∗∗, the elements
ϕ.a, a.ϕ, Φ.ϕ, ϕ.Φ of A∗ and Ψ□Φ, Φ♢Ψ of A∗∗ are defined in the following
way:

< ϕ.a , b >=< ϕ , ab > < a.ϕ , b >=< ϕ , ba >

< Φ.ϕ , b >=< Φ , ϕ.b > < ϕ.Φ , a >=< Φ , a.ϕ >

< Φ□Ψ , ϕ >=< Φ , Ψ.ϕ > < Φ♢Ψ , ϕ >=< Ψ , ϕ.Φ > .

When we refer to A∗∗ without explicit reference to any of Arens products,
we mean A∗∗ with the first Arens product. For fixed Ψ ∈ A∗∗ the map
Φ 7→ Φ□Ψ [resp. Φ 7→ Ψ♢Φ ] is weak∗ − weak∗ continuous, but the map
Φ 7→ Ψ□Φ [resp. Φ 7→ Φ♢Ψ ] is not necessarily weak∗ − weak∗ continuous,
unless Ψ is in A. The left and right topologimathcal centers of A∗∗ are
defined by:

Z(l)
t (A∗∗) = {Φ ∈ A∗∗ : Φ□Ψ = Φ♢Ψ, Ψ ∈ A∗∗},
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Z(r)
t (A∗∗) = {Φ ∈ A∗∗ : Ψ□Φ = Ψ♢Φ, Ψ ∈ A∗∗}.

We say that A is left Arens regular [resp. strongly Arens irregular] if
Z(l)
t (A∗∗) = A∗∗ [resp. Z(l)

t (A∗∗) = A ], right Arens regular [resp. strongly
Arens irregular] if Z(r)

t (A∗∗) = A∗∗ [resp. Z(r)
t (A∗∗) = A ], and Arens regu-

lar [resp. strongly Arens irregular] if it is both left and right Arens regular
[resp. strongly Arens irregular].

Let α ∈ Hom(A,B). Then both of α∗∗ : (A∗∗,□) → (B∗∗,□) and α∗∗ :
(A∗∗,♢) → (B∗∗,♢) are continuous homomorphisms [2, page 251]. Moreover
if ∥α∥ ≤ 1, then ∥α∗∗∥ ≤ 1. A similar argument applies to β ∈ Hom(C,B).

Proof of the next theorem was inspired by [4, Theorem 3.1]

Theorem 2.10. Suppose α ∈ Hom(A,B), β ∈ Hom(C,B) and ∥α∥ ≤ 1,
∥β∥ ≤ 1, and B is Arens regular.
(i) If A∗∗, B∗∗, C∗∗ and (A×α B ×β C)∗∗ are equipped with their first [resp.
second] Arens products, then (A ×α B ×β C)∗∗ is isometrically algebra iso-
morphic to A∗∗ ×α∗∗ B∗∗ ×β∗∗ C∗∗.
(ii) Let Zt be either of left or right topologimathcal centers. Then

Zt((A×α B ×β C)∗∗) = Zt(A∗∗)×α∗∗ B∗∗ ×β∗∗ Zt(C∗∗).

In particular, A×α B×β C is Arens regular if and only if A and C are Arens
regular.

Proof. (i) Since the underlying Banach space of both of (A ×α B ×β C)∗∗
and A∗∗ ×α∗∗ B∗∗ ×β∗∗ C∗∗ are A∗∗ × B∗∗ × C∗∗, then it is enough to show
that identity map between these two algebras keeps the product. The first
Arens product on A∗∗ ×α∗∗ B∗∗ ×β∗∗ C∗∗ is identified by the equations

(2.1) (Φ,Ψ,Ω)(Φ′,Ψ′,Ω′) = (Φ□Φ′, α∗∗(Φ)□Ψ′ +Ψ□β∗∗(Ω′),Ω□Ω′)

when (Φ,Ψ,Ω), (Φ′,Ψ′,Ω′) ∈ (A×α B ×β C)∗∗. We calculate the first Arens
product on (A×αB×β C)∗∗. Let (a, b, c), (a′, b′, c′) ∈ A×αB×β C, (φ,ψ, ω) ∈
A∗ × B∗ × C∗, and (Φ,Ψ,Ω), (Φ′,Ψ′,Ω′) ∈ A∗∗ × B∗∗ × C∗∗. Then:

< (φ,ψ, ω) · (a, b, c), (a′, b′, c′) >=< (φ,ψ, ω), (a, b, c) · (a′, b′, c′) >
= < (φ,ψ, ω), (aa′, α(a)b′ + bβ(c′), cc′) >

= < φ, aa′ > + < ψ,α(a)b′ + bβ(c′) > + < ω, cc′ >

= < φ · a, a′ > + < ψ · α(a), b′ >
+ < β∗(ψ · b), c′ > + < ω · c, c′ >
= < (φ · a, ψ · α(a), (β∗(ψ · b) + ω · c)), (a′, b′, c′) > .

Thus

(φ,ψ, ω) · (a, b, c) = (φ · a, ψ · α(a), β∗(ψ · b) + ω · c).
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Also
< (Φ,Ψ,Ω) · (φ,ψ, ω), (a, b, c) >=< (Φ,Ψ,Ω), (φ,ψ, ω) · (a, b, c) >

= < (Φ,Ψ,Ω), (φ · a, ψ · α(a), β∗(ψ · b) + ω · c) >
= < Φ, φ · a > + < Ψ, ψ · α(a) > + < Ω, β∗(ψ · b) > + < Ω, ω · c >
= < Φ · φ, a > + < α∗(Ψ · ψ), a >
+ < β∗∗(Ω) · ψ, b > + < Ω · ω, c >
= < (Φ · φ+ α∗(Ψ · ψ), β∗∗(Ω) · ψ,Ω · ω), (a, b, c) > .

So
(Φ,Ψ,Ω) · (φ,ψ, ω) = (Φ · φ+ α∗(Ψ · ψ), β∗∗(Ω) · ψ,Ω · ω).

Now
< (Φ,Ψ,Ω) □ (Φ′,Ψ′,Ω′), (φ,ψ, ω) >=< (Φ,Ψ,Ω), (Φ′,Ψ′,Ω′) · (φ,ψ, ω) >

= < (Φ,Ψ,Ω), (Φ′ · φ+ α∗(Ψ′ · ψ), β∗∗(Ω′) · ψ,Ω′ · ω) >
= < Φ,Φ′ · φ+ α∗(Ψ′ · ψ) > + < Ψ, β∗∗(Ω′) · ψ > + < Ω,Ω′ · ω >
= < Φ□Φ′, φ > + < α∗∗(Φ)□Ψ′, ψ >

+ < Ψ□β∗∗(Ω′), ψ > + < Ω□Ω′, ω >

= < (Φ□Φ′, α∗∗(Φ)□Ψ′ +Ψ□β∗∗(Ω′),Ω□Ω′), (φ,ψ, ω) > .

Therefore
(2.2) (Φ,Ψ,Ω)(Φ′,Ψ′,Ω′) = (Φ□Φ′, α∗∗(Φ)□Ψ′ +Ψ□β∗∗(Ω′),Ω□Ω′).

The result for the first Arens product follows from (1) and (2). A similar
argument provides the result for the second Arens product.

(ii) Since B is Arens regular, then B∗∗ = Z(l)
t (B∗∗) = Z(r)

t (B∗∗). Let

(Φ,Ψ,Ω) ∈ Z(l)
t ((A×α B ×β C)∗∗) = Z(l)

t (A∗∗ ×α∗∗ B∗∗ ×β∗∗ C∗∗).

Then for every (Φ′,Ψ′,Ω′) ∈ A∗∗ ×α∗∗ B∗∗ ×β∗∗ C∗∗ we have
(Φ,Ψ,Ω)□(Φ′,Ψ′,Ω′) = (Φ,Ψ,Ω)♢(Φ′,Ψ′,Ω′)

or equivalently
(Φ□Φ′, α∗∗(Φ)□Ψ′+Ψ□β∗∗(Ω′),Ω□Ω′) = ((Φ♢Φ′, α∗∗(Φ)♢Ψ′+Ψ♢β∗∗(Ω′),Ω♢Ω′).

In particular Φ□Φ′ = Φ♢Φ′, Ω□Ω′ = Ω♢Ω′ and hence Φ ∈ Z(l)
t , Ω ∈ Z(l)

t .
So

Z(l)
t (A∗∗ ×α∗∗ B∗∗ ×β∗∗ C∗∗) ⊆ Z(l)

t (A∗∗)×α∗∗ B∗∗ ×β∗∗ Z(l)
t (C∗∗).

Conversely let (Φ,Ψ,Ω) ∈ Z(l)
t (A∗∗)×α∗∗B∗∗×β∗∗Z(l)

t (C∗∗). Arens regularity
of B for every (Φ′,Ψ′,Ω′) ∈ A∗∗ ×α∗∗ B∗∗ ×α∗∗ C∗∗ implies that

(Φ,Ψ,Ω)□(Φ′,Ψ′,Ω′) = (Φ,Ψ,Ω)♢(Φ′,Ψ′,Ω′)

and hence (Φ,Ψ,Ω) ∈ Z(l)
t (A∗∗ ×α∗∗ B∗∗ ×β∗∗ C∗∗). Therefore

Z(l)
t (A∗∗)×α∗∗ B∗∗ ×β∗∗ Z(l)

t (C∗∗) ⊆ Z(l)
t (A∗∗ ×α∗∗ B∗∗ ×β∗∗ C∗∗).
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□

2.3. Amenability. In this section we show stability of several notions of
amenability with respect to this product between three Banach algebras. Let
X be a Banach A -bimodule. We denote the set of all bounded derivations
from A into X by Z1(A,X ) and the set of inner derivations from A into X
by B1(A,X ). Let

H1(A,X ) := Z1(A,X )/B1(A,X )

be the first cohomology group of A with coefficients in X . We say that
A is amenable if H1(A,X ∗) = {0} for every Banach A -bimodule X and
it is weakly amenable if H1(A,A∗) = {0}. A derivation D : A → X is
approximately inner if there exists a net (xλ) ⊆ X such that D(a) = limλ(a ·
xλ − xλ · a)(a ∈ A). The algebra A is approximately amenable if for each
Banach A -bimodule X every derivation D : A → X ∗ is approximately inner
and A is approximately weakly amenable if every derivation D : A → A∗ is
approximately inner.

Amenability has well known hereditary properties [3, 15]. In particular,
if U is a strongly splitting extension of B on A it is amenable (respectively
contractible) if and only if both A and B are amenable (respectively con-
tractible).

Theorem 2.11. Let α ∈ Hom(A,B), β ∈ Hom(C,B), ∥α∥ ≤ 1 and ∥β∥ ≤ 1.
Then
(i) A ×α B ×β C is amenable (respectively contractible) if and only if A,B,
and C are amenable (respectively contractible).
(ii) If moreover B has a bounded approximate identity and A×α B ×β C is
approximately amenable then so are A, B and C.

Proof. (i) This part follows from the fact that the short exact sequence

Σ : 0 → A×α,0 B
i→ A×α B ×β C q→ C → 0

splits strongly and [4, Theorem 4.1].
(ii) This a consequence of 2.5 and [8, Corollary 2.1]. □

Theorem 2.12. Let α ∈ Hom(A,B), β ∈ Hom(C,B), ∥α∥ ≤ 1 and ∥β∥ ≤ 1.
(i) If AB, and C are weakly amenable then so is A×α B ×β C.
(ii) If A×α B ×β C is weakly amenable then A and C are weakly amenable.
Moreover suppose that B is commutative.
(iii) If AB and C are approximately weakly amenable then so is A×αB×β C.
(iv) If A ×α B ×β C is approximately weakly amenable then A and C are
approximately weakly amenable.

Proof. (i) Since B is a weakly amenable closed ideal of A ×α,0 B and A ∼=
A×α,0 B/B is weakly amenable then A ×α,0 B is weakly amenable. Sim-
ilarly A ×α,0 B is a weakly amenable closed ideal of A ×α B ×β C and
C ∼= A×α B ×β C/A×α,0 B is weakly amenable then A×α B ×β C is weakly



SHORT TITLE 23

amenable.

(ii) Let d : A → A∗ be a bounded derivation and define D : A×αB×βC →
A∗ × B∗ × C∗ by D(a, b, c) = (d(a), 0, 0). Then D is a bounded linear map
and

D((a, b, c)(a′, b′, c′)) = D(aa′, α(a)b′ + bβ(c′), cc′)

= (d(aa′), 0, 0) = (d(a)a′ + ad(a′), 0, 0)

= (d(a), 0, 0)(a′, b′, c′) + (a, b, c)(d(a′), 0, 0)

= D(a, b, c)(a′, b′, c′) + (a, b, c)D(a′, b′, c′).

So D is a bounded derivation and hence there is a (ζ1, ζ2, ζ3) ∈ A∗×B∗×C∗

such that
D(a, b, c) = (ζ1, ζ2, ζ3)(a, b, c)− (a, b, c)(ζ1, ζ2, ζ3), ((a, b, c) ∈ A×α B ×β C).

So
d(a), 0, 0) = D(a, 0, 0) = (ζ1, ζ2, ζ3)(a, 0, 0)− (a, 0, 0)(ζ1, ζ2, ζ3)

= (ζ1a− aζ1, 0, 0).

Therefore d(a) = ζ1a− aζ1 (a ∈ A). Similarly C is also weak amenable.
(iii) Since for commutative Banach algebras the two concepts of weak

amenability and approximate weak amenability coincide, then B is weakly
amenable. But B is a closed ideal of A ×α,0 B, and A ∼= A×α,0 B/B is
approximately weakly amenable. So by [5, Proposition 2.2] A ×α,0 B is
approximately weakly amenable. Also C ∼= A×α B ×β C/A×α,0 B is ap-
proximately weakly amenable and so by [5, Proposition 2.2] A×α B ×β C is
approximately weakly amenable.

(iv) Let d : A → A∗ be a bounded derivation and as in part (ii) define a
bounded derivationD : A×αB×βC → A∗×B∗×C∗ byD(a, b, c) = (d(a), 0.0).
By assumption there exists a net (φλ, ψλ, ωλ)λ in A∗×B∗×C∗ such that for
every (a, b, c) ∈ A×α B ×β C

D(a, b, c) = limλ((a, b, c)(φλ, ψλ, ωλ)− (φλ, ψλ, ωλ)(a, b, c)).

Now
< d(a), a′ > = < D(a, 0, 0), (a′, 0, 0) >

= < limλ((a, 0, 0)(φλ, ψλ, ωλ)− (φλ, ψλ, ωλ)(a, 0, 0)), (a
′, 0, 0) >

= < limλ(aφλ − φλa), a
′ >

and hence d(a) = limλ(aφλ − φλa) a ∈ A. By same argument C is also
approximately weakly amenable. □

2.4. Conclusion. By using our definition, many related concepts and theo-
rems such as cohomological characterization, multipliers and BSE-functions
Can be generalized to our new Banach algebras.
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